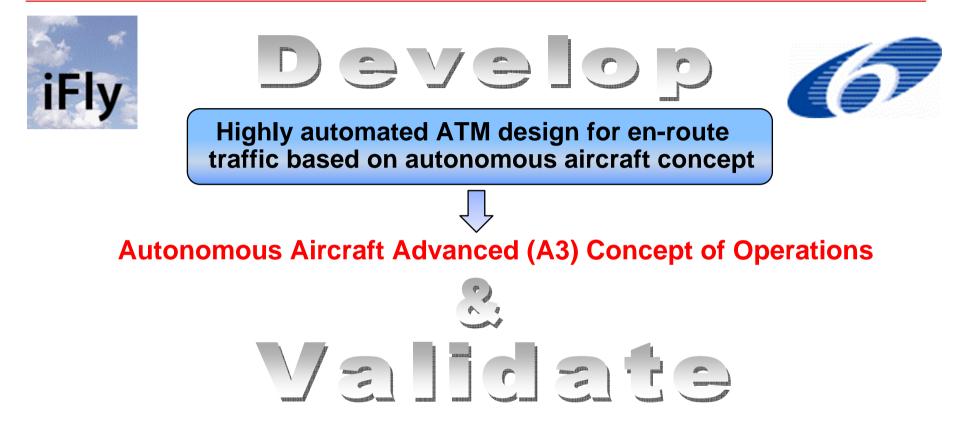


iFly: ASAS Self Separation

Airborne Perspective


Petr Cásek & Rosa Weber November 13, 2008

ASAS-GN Workshop, Rome

iFly Objectives

- Assess the highest level of en-route traffic demand in which equipped aircraft can safely self separate
- Develop the airborne system requirements that must be met to ensure the safe
 2025+ operations
- Cost –Effectiveness Analysis

Project Consortium

Honeywell

Aviation Participants

- National Aerospace
 Laboratory (NLR)
- + Honeywell 🕨
- 🔸 Isdefe 💻
- 🔸 Dedale I
- 🔸 UK NATS En Route Ltd. 🗯
- + Eurocontrol EEC I
- + DSNA-DTI-SDER

University Participants

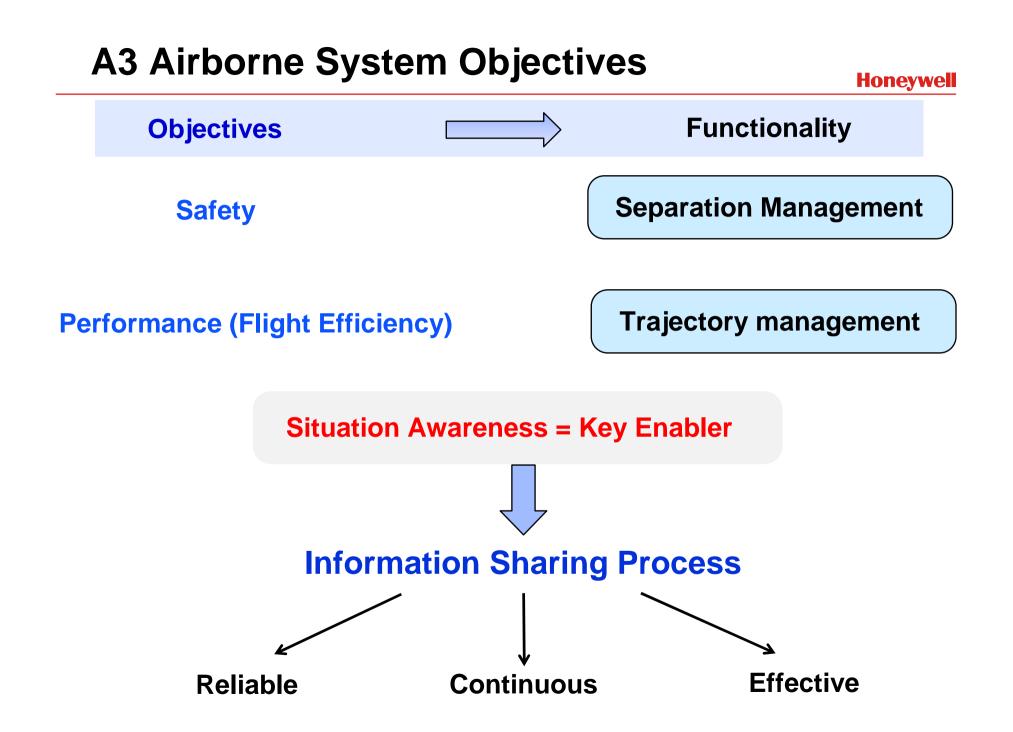
- National Technical University of Athens
- + University of Twente
- + Ecole National de l'Aviation Civile
- + University of Tartu
- Institut National de Recherche en Informatique et en Automatique
- + University of Leicester 🛛 😹
- Athens University of Economics And Business
- Eidgenossische Technische Hochschule
 Zurich
- + University of l'Aquila
- + Politecnico di Milano
- + University of Cambridge 🛛 😹

Unique blend of university and aviation partners!

Honeywell

En-route phase of the flight

All aircraft are equipped to self separate


No ATC involvement

Ground information sharing support (SWIM) available

Design & Validation Elements of iFly

- Human Factors identification and analysis of responsibility issues, bottlenecks, information needs
- Traffic Complexity assessment development of suitable metrics, prediction
- Conflict Resolution Algorithms development of CR algorithms suitable for short, medium, and long term timeframe
- Complementary Safety-based design approaches:
 - 1. TOPAZ modeling and Monte Carlo simulation based Hazard and Collision Risk Analysis
 - 2. RTCA/Eurocae ED78a based System Safety Engineering
 - 3. Formal verification using critical observability analysis of hybrid automaton

Information Support

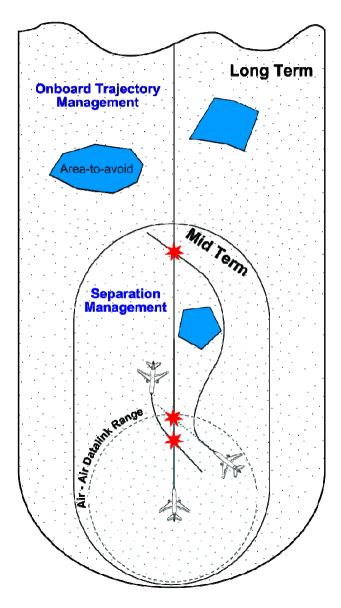
Information Sharing Process

Level 1: Air–Air Broadcast, State only

SM Characteristics

- Air–Air data link range
- CD further limited by accuracy of state-based TP
- No information back up

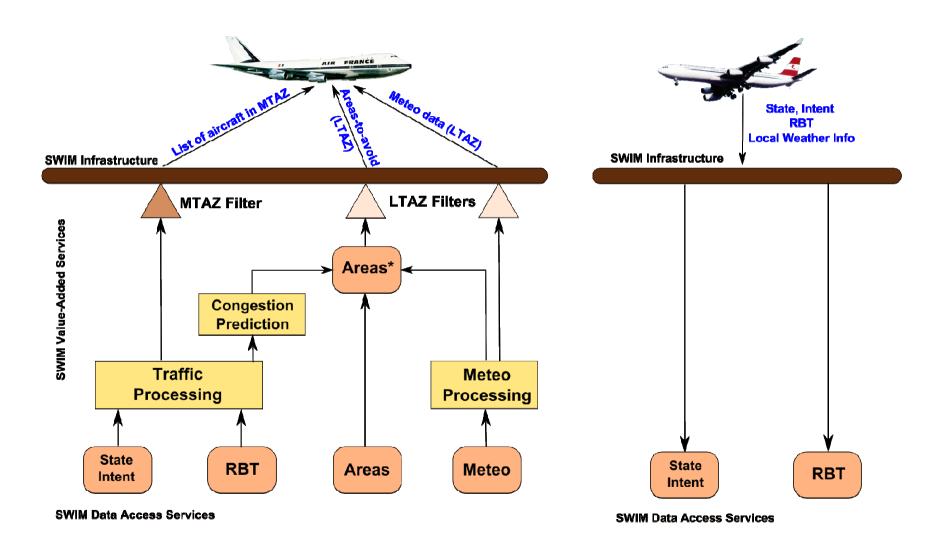
Level 2: Air–Air Broadcast, State + Intent Air–Air data link range


No information back up

Level 3: Air–Air Broadcast + SWIM support, State + Intent

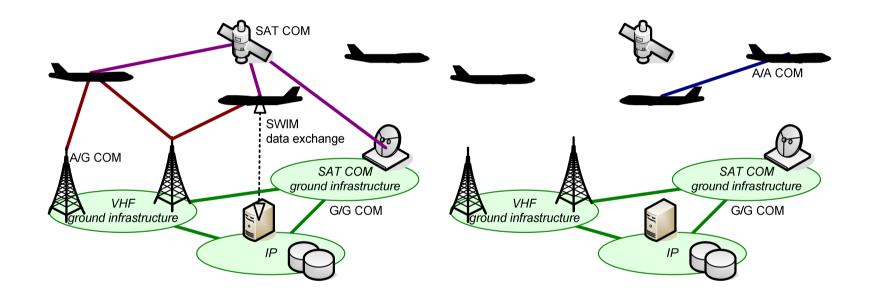
- Range defined by the area of interest (in principle)
- CD limited by the range of intent information
- Information back up (pointto-point communication, SWIM)

iFly considers Level 3, but performance and safety assessment may be performed for multiple levels.


Situation Awareness

Areas of interest:

- Long Term Awareness Zone(LTAZ) relevant for Trajectory Management (optimization)
- Mid Term Awareness Zone(MTAZ) used for Separation Management
- Air–Air Data link Range additional statebased Conflict Detection


SWIM and Envisioned Functionality

Data Link Communications (Traffic Data)

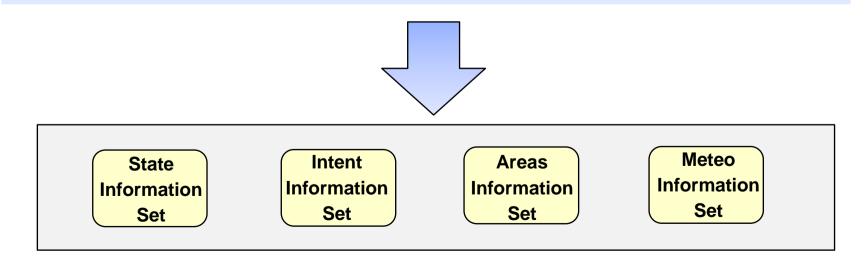
Honeywell

Reception of data broadcasted by other aircraft

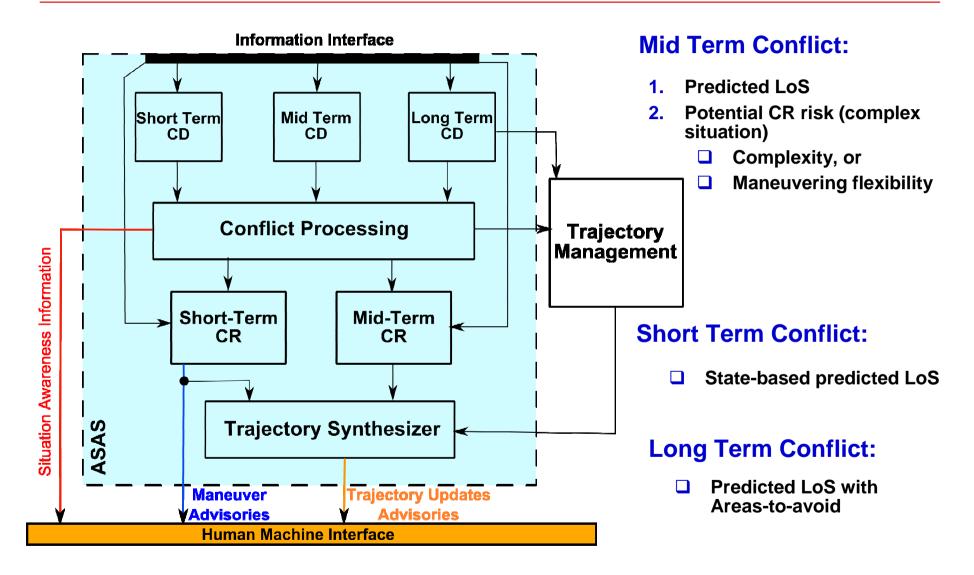
Querying ground infrastructure (e.g., SWIM)

Direct querying another aircraft

A3 Airborne System Architecture Overview


Honeywell

User


Air-Ground Air-Air 20-SWIM Sensors Preferences Comm. Comm. **Information Management** Information Processing and Conformance Monitoring Shields communications details \triangleright State Areas Intent Meteo Information Information Information Set > Collect and process required data Set Set Set **Own State** and Intent ¥ Mid Term Short Term Long Term CD CD CD **Separation & Trajectory Management** 1 W W Conflict Processing Trajectory Management Situation Assessment Resolution Advisories Short-Term Mid-Term CR CR ASAS **Trajectory Synthesizer Human Machine Interface** Modified User Pilot Pilot Preferences Situation Awareness Approved Intent Update Autopilot/ FMS Flight changes advisories Manual

Information Management

- Process all incoming broadcasted data
- Process the list of MTAZ traffic
- Query aircraft or SWIM for missing information
- Process areas-to-avoid (restricted areas, weather hazards, ...), uploaded meteo data and data from sensors (weather radar, EGPWS)
- Monitor the conformance of aircraft to the intent
- Data fusion to determine the most probable trajectories of aircraft

CD&R And Trajectory Management

A3 – iFly Next Steps

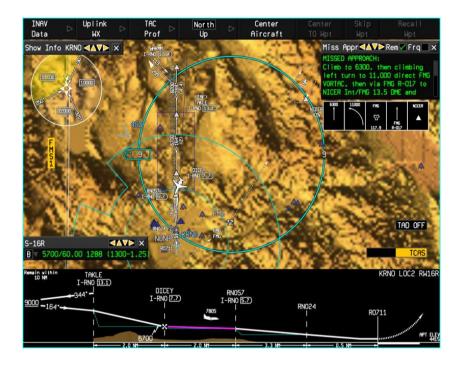
Assessment Cycle

- Hazard and Collision Risk Analysis
- Cost-Effectiveness Analysis
- Second Design Cycle
 - Integration of innovative methods (complexity, CR algorithms)
 - ConOps refinement
- System Safety Engineering using ED78A methodology
 - Airborne System Design Requirements
 - > Non-airborne System Requirements

- Provide aircrew with automation and decision support tools to ensure planned trajectory is clear of traffic, weather and restricted airspace
 - Integrated ownship and surveillance (ADS-B/C) data visualization
 - Real-time traffic, flow management and airspace hazard data;
 - Complementary conflict alerting and multiple resolution maneuvering options
 - HMI must be designed to allow for a quick and easy data input/understanding, which is tailored to users needs
 - Level of information
 - Amplification of human functions by machines
 - Situation awareness needs of ATM & aircrew

Surveillance Today

Separate Products


- TCAS (Collision Avoidance)
- EGPWS (Terrain Avoidance)
- Surface moving maps
- Weather Radars
- FMS (Navigation, Guidance, Flight Optimization)
- Multi-Function Radar Display
 - Weather
 - Terrain
 - Traffic
 - Lightning
 - FMS/NAV
 - Checklist

Integrated Surveillance Systems

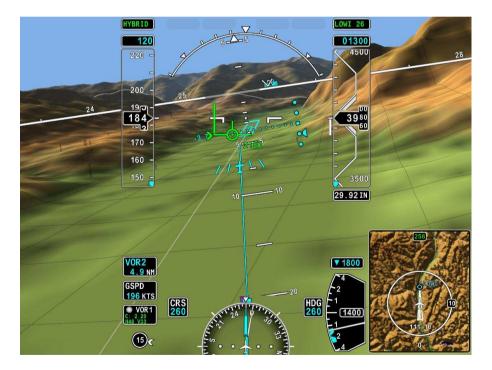
- Integrated Hazard Avoidance System for BGA, e.g., Honeywell Bendix/King
 - Positioning
 - Weather avoidance
 - Traffic advisories
 - Terrain avoidance
- Aircraft Environment Surveillance System (AESS)
 – A380, A350, B787
 - TCAS
 - Mode-S transponder
 - EGPWS
 - 3D-Volumetric Wx radar

INAV Display

Honeywell

INAV[™] displays impediments and details of point to point flight, e.g.,

- Restrictive airspace, terrain
- Obstacles: weather and other aircraft
- Graphical Flight Planning™
- Vertical Situation Display (VSD)


- Sensor data
- EGPWS cautions, warnings
- □ TCAS
- Airborne Wx radar
- Uplinked weather

Integrated PFD

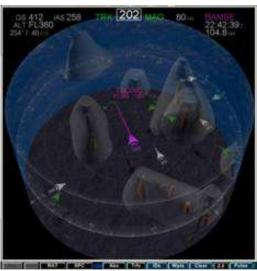
Honeywell

Synthetic and enhanced vision systems integrate ATM relevant data (e.g., air traffic, weather, RNP, 4-D navigation)

IPFD[™]View of an offset approach

- MFD displays
 - navigational maps
 - engine data,
 - aircraft system data
 - TCAS
 - uplinked & sensed probabilistic weather data
 - video and other information

Cockpit Display of Traffic Information (CDTI)



NASA Ames Flight Deck Research Laboratory

3D CDTI

2D/3D Weather Display: weather and terrain integrated into the CDTI display

Advanced Cockpit Situation Display

- Integrated CDTI and CD&R.
- Based on flight path "Intent"
- Detects conflicts up to 12
 minutes in advance
- Presents pilot with list of precomputed maneuvers
- User-preferred resolution types?

iFly A3 ConOps has benefitted from NASA's pro-bono involvement:

- > NASA's advanced airborne self separation ConOps and research
- Active iFly participation by NASA Langley ATM Research Team
 - > David Wing, Maria Consiglio
 - Frank Bussink, previously at LaRc on loan from NLR

Honeywell

Web site: <u>http://iFLY.nlr.nl</u>

Coordinator: Henk Blom (NLR)

A3 Concept of Operations documents:

- High level A3 available at the web site
- A3 ConOps will follow soon (final draft under review)

Thank You!